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Uniform transhtional motion causes a hollccylinder filled with blackbody radiatioto gain an apparent inertial m.
Based on an electrodynamic analysigsenthridetermined that the relationship betweentaBcity-dependent apparent
inertial mass 1t) and the energyE() of radiation was given b¥ = %mcz. The relationship between mass and er

derived dynamically bydasenohrl differs frol E = mc? derived kinematically by Einstein.dre | use the relationship
between the energy and lineaomentum p) of a photon £ = pc) and thedynamic effects produced in Euclidean sg
and Newtonian time by the Doppler effect expandedecond order tshow that Einstein’s equati for the mass-energy
relation is the correct one farradiatiorfilled cylinder in uniform motion. The increaselinear momentum caused by t
velocity-induced Doppler effect expanded to the second amefrlts in an increase in tlinternal energy densi of the
radiation. The velocitglependent increase in the inte energy results from both an increase in temperatdean increas
of entropyconsistent with Planck’s blackbody radiation . The velocityinduced increase in the inter energy density is
equivalent to a velocitgependent increase in the apparent inertial masgaofdiation within the cylind.

1. Introduction

As a result of a kinematical analysiEinstein
[1,2,3 derived the following equation to descri
the relationshigpbetween the ener¢(E) and inertia
(m) of light:

E = mc? (1)

By contrast, Hasenéhrl [@,6] took a dynami
approach to determine thelationshipbetween the
energy and inertia of light, byoasideing the work
done by the anisotropicadiation pressure [7]
inside a uniformly translatingylinder (Fig. 1).
Hasenothl's equation describing the relationsl
between the energy and inertia of blackb
radiation in a uniformlymoving cylinder differs
from Eqn. (1)by an algebraic prefact:

E= chz 2

The goal of this paper is ghow thalEqgn. (1) is
the correct equation for describitige relationship
between thesnergy and inertia of radiaticfor a
uniformly translating blackbody radiation-filled
cylinder alhough the assumption relative time
used by Einstein to derive Eqn. (3unnecessary.
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Fig.1: HasenohrI'gedankenexperime. A cylinder with
matte black and adiabatic walls and constant
invariant volume containing blackbody radiat
characterized by absolute temperaT moves through a
vacuum at absolute zero. According to the Third lcf\
Thermodynamis, absolute zero is unattainable, so in
real experiment, the cylinder will have to moveotigh &
vacuum with a finite temperature, which itself witlsult
in an optomechanical friction due to the Doppldectf
expanded to the second order and teed for additional
applied potential energy to move the cylinder given
uniform velocity for a given time. The orientatiaf 6
relative to thex axis is shown, the orientation «p is
perpendicular to th& axisand parallel to the end wal
The length ) of the cylinder is equal to twice the rad
(r) of an end wall so thalnrl = 2mr?. With this
geometry, ondralf of the photons interacting with a w
interact with an end wall. The time it takes a pimoto

propagate from end wall to end Wal\l/c.
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2. Resultsand Discussion

The derivation | give here is based on the
postulates of Euclidean space, Newtonian time, and
the Doppler effect expanded to second order [8]. |
assume that the walls of the cylinder are adiabatic
that the volume is constant and invariant, that the
thermodynamic system is closed, and that energy
and linear momentum are conserved. | discuss a
situation where the walls are matte black and are
perfect absorbers and emitters. | consider the
possibility that the portion of the potential energ
applied to the moving cylinder that is not
transformed into kinetic energy is transformed at
the moving matte-black walls into a
thermodynamic potential energy such as the
internal energyl().

According to the work-energy theorem, the
applied potential energyPf,p,,i.q) Needed to
move an object quasi-statically from a state of res
to another state with higher uniform velocity) (
for time interval {t) is given by the following
formula:

ty

PEapplied = ftl Fappliedv dt (3
Where, F gppiicq 1S the average force applied over
time intervaldt.

If one were to move a blackbody radiation-
containing cylinder at constant velocity through a
vacuum at absolute zero where there is no external
material - nor radiation-friction, the radiatiorside
the cylinder would still add a velocity-dependent
apparent inertial mass to the cylinder. This is
because the radiation inside the cylinder thaltessri
the back wall would be blue-shifted while the
blackbody radiation inside the cylinder that stsike
the front wall would be red-shifted (Fig. 1). The
Doppler-induced frequency shift expanded to
second order of each photon that makes up the
blackbody radiation due to relative motion is given
by the following equation [8]:

vcos 6

1
(vcos 6)2 (4)
1 i a—

Where, v, is the frequency of the photon at the

peak of Planck’s blackbody radiation curve that
describes the blackbody radiation in the cavity at
rest ¢ = o), v, is the frequency of the photon at

the peak of Planck’s blackbody radiation curve that
describes the blackbody radiation in the cavity
when the cylinder is traveling at relative veloaity

Vy = Vo

and 0 is the angle subtending the absorbed or
emitted radiation and the velocity vectér The
Dopplerization of the radiation within the cylinder
will also result in a change in the energy of each
photon:

vcos 6

1
- ¢
(vcos )2 (5)
1-

When the cylinder is at rest, the energy of a
photon €,) with peak frequency v() striking
normal to either end wall is given by:

hv, = hv,

E, =hv, (6)

However, when the cylinder is moving at a uniform
velocity over a given time, the energy of a photon
at the peak of the blackbody radiation curve that i
propagating normal to the end walls wdkécrease

as a result of being absorbed and emitted by the
front end wall § = 0) andincreaseas a result of
being absorbed and emitted by the back end wall
(6 = m). As a result of the second order effects, the
energy increaseat the back wall will be greater
than the energydecrease at the front wall.
Consequently, as a result of the uniform
translational movement, the energhvf) of the
photons absorbed and emitted by both walls will
increase over timedt. As a result of the two
absorptions and the two emissions that take place a
the front and back walls durindt, the velocity-
dependent energy of the photon at the peak of the
black body radiation curve is given by:

1- = 1+ <
E(normal)v = 2hy, = + 2hy, | =% =

2
v
1_6_2

4
= hy,
o 172

— R
v
I 1_6_2 1—5—2

Since the photons in the blackbody radiation
can strike the end walls at any anghg from O to
+> and any angleg() from 0 to+~, the energy
transfer depends on the cosines of the angles of

incidence and the angles of emission relative ¢o th
normal:

2hv, (7)

Ey = Etormany f% cos 6 df f—E_ﬂ cospdy =
2 2

E(nolmal)v (8)
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Thus the average energy transfer per photon at
the peak of the blackbody radiation curve at any
angle is one-fourth of the energy transfer of a
photon at the peak of the blackbody radiation curve
that strikes the end wall perpendicular to the
surface. Consequently, when the cylinder is in
uniform motion, the average photon with a
frequency at the peak of the blackbody radiation
curve will have its energy increased in tioheby:

E,=hv, = hy, | — 9)

As a result of the Doppler shift expanded to
second order, after a given time interval, the gyer
of the photons interacting with the matte black end
walls of the cylinder moving at constant velocity
will contribute to a blackbody distribution of
radiation characterized by a peak with greater
frequency and thus a higher temperature. fiflse
order Doppler effect alone cannot account for the
nonlinear relationship between applied energy and
kinetic energy because the first-order Doppler
shifts at the end wall at the front of the cylinaéed
the end wall at the back of the cylinder canceheac
other and the average frequency of the photons in
the cavity does not change [9]. However, the
expansion of the Doppler effect second order
gives the asymmetry necessary to convert motion
into internal energy.

As a result of the Doppler shift expanded to
second order, as — c, the energy of the average
photon with a frequency at the peak of the
blackbody radiation curve approaches infinity.
Since this energy increases at the expense of the
conversion of the applied potential energy into the
kinetic energy of the cylinder, the increased eyerg
of the radiation can be considered to be the
equivalent of a velocity-dependent increase in the
apparent inertial mass of the radiation. Since the
apparent inertial mass of the blackbody radiation
increases as a result of the uniform movement of
the cylinder through the vacuum, the applied force
(F appliea) Needed to maintain a constant velocity
(v) cannot be constant but must increase over the
time intervaldt consistent with Eqn. (3). Thus the
apparent increase in the inertial mass is a
manifestation of the fact that the applied poténtia
energy is transformed not only into the kinetic
energy of the radiation-filled cylinder but alsddn
the internal energy of the blackbody radiation or
photon gas itself.

A complete conversion of the applied potential
energy into the kinetic energy of the cylinder
would only happen when the inside of the cylinder
is at absolute zero and there would not be any
photons within the cavity [10,11]. As absolute zero
is unattainable, this is a limiting condition what
would not happen in nature.

The temperatureT( of the photon gas within a
cylinder moving at constant velocity is related to
the peak frequency of the radiation in the cylinder
at rest and on the velocity of the cylinder. It is
obtained by taking Eqn. (9) into consideration in
order to create the relativistic version of Wien'’s
displacement law given below:

E, = hv, = hv, |—=| = 2.821439 kT (10)

1~z

Where, k is Boltzmann’s constant. | assume that
while the peak frequency and peak energy change
with velocity, the spectral distribution, which is
described by Planck’s blackbody radiation law,
remains invariant. The increase in the temperature
(dT) of the blackbody radiation that is related to
the increase in the energgH,) of the photons at
the peak of the blackbody radiation curve resulting
from the Doppler shift is obtained by
differentiating Wien’s displacement law:
dE, = 2.821439k dT (11)
Planck’'s blackbody radiation law relates the
spectral distribution of energy to the internal
energy. The internal energy) of the blackbody
radiation is related to the temperature of the
blackbody radiation by the Stefan-Boltzmann law:

_ smok* 4
U= 15h3¢3 (12)

The increase in the internal energy of the
blackbody radiation that is due to the velocity-
induced increase in the temperature of the
blackbody radiation is given by differentiating Egn
(12):

_ 32m5k*

3
dU =S5 VT3dT (13)
8mokt .
Where, —-— is the product of the Stefan-

Boltzmann §) constant and one-fourth the speed of
light (a = %’ =7.56 x 10° J m® K™). Thus part of
the applied potential energy used in moving the
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cylinder through a vacuum causes an increase in
the internal energy of the blackbody radiation in

the cylinder consistent with the conservation of

energy. Thus the amount of potential energy
needed to move the cylinder at a given constant
velocity is greater than the potential energy
predicted to move the cylinder if the internal

energy of the radiation did not change with

movement, and the radiation did not acquire an
apparent inertial mass.

In order to formally relate the increase in the
potential energy needed to maintain a constant
velocity to the apparent inertial mass, we have to
consider the linear momentum of the photons that
make up the blackbody radiation. The linear
momentum p) of a photon is given by [12]:

p=-== (14)

E hv

c
When the cylinder is at rest, according to Eqgn.

(8), the linear momentum transferred by the

average photon with peak frequeney)(moving in

any direction when they are absorbed or emitted by

the end wall is given by:

Po =2 (15)
When the cylinder is in uniform motion, the
average photon with the peak frequency,)(
traveling in any direction that is absorbed and
emitted by the front end wall and then absorbed
and emitted by the back end wall, will have its
linear momentum increased by:

hve | 1— % hve | 1+ ¢
Py = 2— + 2—|==| =

4c v2 4c v2
1-= 1-=

hv, 2 hvo 1

— =— 16

4c v2 c v2 ( )
1-= -z

After a given duration of timeit, the linear
momentum of the photons traveling in any
direction in the cylinder moving at uniform
velocity would increase. By definition, the linear
momentum of the photon with the new peak
frequency is equal to the product of its mass)(
and velocity:

__ hyg 1

Dy =

=m,v a7

Since the velocity of the photons in the cavity is
constant and equal g the total differential of the
linear momentum is given by:

dp, = cdm, (18)

As a result of the Doppler effect expanded to
second order, the radiation produces an increase in
linear momentum in a given duration of time, on
the cylinder moving at constant velocity. The
increase in linear momentum results in an increase
in the apparent inertial masdng) of the photon
with peak frequency moving at velocityin any
direction within the cylinder according to the
following formula:

(19)

h
-V = cdm,

The blackbody radiation within the cylinder in
uniform translational motion provides a linear
momentum that increases with velocity and time.
Consequently, the applied force needed to maintain
a constant velocity during that duration of time
cannot remain constant but must also increase to
compensate for the increased linear momentum.
Interestingly, while he was working on the
guantum nature of radiation, Einstein [12,13]
realized that the momentum of radiation would
exert a fadiation friction” on a moving body, but
was too engaged in the General Theory of
Relativity to re-interpret the electrodynamics of
moving bodies in terms of dynamics.

The apparent increase in the inertial mass of a
photon is obtained by dividing all terms in Eqgn.
(19) byc:

After substitution ofp,, with % according to [12],
we get:

dE, _h
Ci2=c—zvo \/;702—1 =dm,, (21)
1-=
After rearrangement, we get:
dE, = hv, - 1| = c%dm, (22)

1
2
v
1—5—2
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which is reminiscent of the equation given by
Einstein [1].

The increase in the apparent inertial masses of
the photons dm,) at the peak of the spectral
distribution given by Planck’s radiation law is
related to the total increase in the apparentialert
mass {m) of the blackbody radiation in the
cylinder. The time needed for the photons within
the cylinder to go from an initial state whose
blackbody radiation is described by a peak at one
frequency to a final state whose blackbody
radiation is described by a peak at a higher
frequency may depend on the details of the force
and the dimensions of the cylinder. To simplify
matters, | assume that the duration of tinbe
needed for the blackbody radiation to reach each
state is a constant and the force is not constant.

Egn. (22) describes how a change in the
uniform velocity of a radiation-filled cylinder is
transformed into a change in the energy and inertia
of the radiation inside the cylinder. The change in
the energy and inertia of radiation results from th
Doppler effect expanded to second order and the
relationship between energy and inertia depends on
the defined relationship between the energy and
momentum of radiatiorE, = p,c. Below | will
use Planck’s blackbody radiation law, a law that |
contend holds in any inertial frame, to relate the
spectral distribution of radiation at any velocity
the internal energy of the radiation.

In a cylinder containing a photon gas at
constant volume, the applied potential energy
needed to move the cylinder at constant velocity
from state 1 to state 2 is distributed between the
increase in the kinetic energy of the cylinderlitse
and the energy equivalent of the apparent inertial
masses of all the photons in the photon gas. Based
on Eqgn. (22), | consider the increase in the energy
equivalent of the apparent inertial masses to be
equal to the increase in the internal enerdfy)(of
the photon gas:

ctdm =dU (23)

Since the internal energy of a photon gas is
related thermodynamically to both thermal energy
and pressure-volume energy [14,15], we can try to
characterize further the increase in the energy of
radiation that occurs when a closed thermodynamic
system is moved at constant velocity. In a closed
thermodynamic system with constant volume
moving at constant velocity, the velocity-dependent
increase in internal energy{) of the photon gas
can be considered thermodynamically as a

velocity-dependent increase in thermal enetlfy)(
and pressure-volume enerdg3d{/):

dU = dQ — PdV (24)
However, PdV vanishes since the volume is
constant by definition. The complete differentiél o
the thermal energyd(Q) is given by the following
equation:

dQ = TdS + SdT (25)
Where,T is the absolute temperature afids the
entropy of radiation in the cavity with a constant
volume ). Note that the increase in thermal
energy in the cylinder with adiabatic walls doe$ no
result from heat transfer from a thermal reservoir,
as it does in traditional thermodynamic systems
[16], but from the dynamic effects of the velocity-
induced Doppler effect expanded to second order.
The velocity-induced Doppler effect can result in
an increase in temperature and/or an increase of
entropy. The increase in the thermal energy of the
photon gas that happens in the absence of heat flow
may help in the kinematic understanding of the
contentious and contradictory field of relativistic
thermodynamics [17].

If the walls of the cavity are matte black,
consistent with Planck’s blackbody radiation law,
the photon number is not conserved and the
increase in internal energy due to the uniform
translational motion for a given duration will rétsu
in an increase in the temperature (due to an
increase in the frequency of the photons at th& pea
of the blackbody radiation curve) and an increase
in entropy (due to an increase in the number of
photons). Neither of these quantities alone are
considered here to be invariants.

The ability of the blackbody radiation to take up
thermal energy is given by the specific heat
capacity at constant volumé) that is obtained by
differentiating the internal energy at constant
volume with respect to temperature:

o= (2, -

The spectral number densityr)( of photons,
each with a given frequency, in the cavity at a
given temperatureT(, is obtained by dividing the
internal energy l{), given by Planck’s blackbody
radiation law, by hv. Planck’s [18] blackbody
radiation law gives the spectral energy density:

32mok*

3
15h3¢3 vr

(26)
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ulv, T)dv = 2(1/, Tdv = %hthdv 27)
|4 c KT -1

The spectral number density or the number of
photons with a given frequency is given by:

gmwh3v?
v

h3c3ekT-1

_un) _
n(,T)dv = — dv = (28)

The total number densit)%x of photons within

the cylinder varies with the velocity of the cylend

in the same way that the total number density
varies with temperature. The total number density
of photons comprising a blackbody distribution of

radiation characterized by a given temperature at
constant volume is obtained by integrating Eqn.
(28):

N 0 8nk3T3 oo K32
—= | "n(,TNdv = dv =
%4 fo ) h3c3 fo k3T3e%_1
2
oui’1? oo (i7)
h3c3 fO hv (29)
ekT—-1

The integral in Eqn. (29) can be solved by letting
hv h

x = — anddx = —dv:
kT kT

N _ o _ 8mk3T3 (oo (x)%dx
- =Jy nv.Ddv === [ =~ (30)
[oe] 2 .
Since f, (:i_dlx = 2.404, the total number density

of photons in a cavity of temperatufas:

N =60.42 (’;—:)3 =

v =

3
60.42 (ﬁ) T3 = 2.04 x
107 T3 (31)

Differentiating Egn. (31), we get the change in the
total number density of photons with a change of
temperature at constant volume:

~dN =181.26 )3T2dT (32)
: .

k

he

The total entropy of photons within the cylinder
varies with the velocity of the cylinder in the sam

way that the total entropy varies with temperature.

The increase of entropy of the photon gas with
temperaturel’ is obtained by dividing the internal
energy differential given in Egn. (13) by the

temperature:
au _ 32m°k*

s =%

T ~ 15h3c3

VT2dT (33)

SinceS vanishes at absolute zero whétalso
vanishes, the absolute entrapy19] of the photon
gas at any temperaturE is obtained by integrating
Eqgn. (33):

32m5k* 3
45h3¢3

S= (34)
The entropy density of photons within the cylinder
varies with the velocity of the cylinder in the sam
way that the entropy density varies with
temperature. The value of the entropy obtained
from Egn. (34) can be used to find the entropy
density of the blackbody radiation in the cylinder
characterized by temperatufe

s 3215k (kT)3
v 45 \hc

(39)

By taking the ratio of Eqn. (35) and Eqn. (31), the
entropy per photon in the blackbody radiation is
found to be a constant independent of velocity and
temperature, and is given by:

_32nk 1
6042

(36)

S sV _ 3215k (kT)3 1
N NV a5 \hc kT\3 45
60.42()

3.60k

How the entropy of a photon relates to the
degrees of freedom of a photon is a mystery. If
entropy is defined by the degrees of freedom, with
each degree of freedom contributing to the entropy,
then the entropy of a photon is close to that of a
diatomic gas molecule with translational, rotationa
and vibrational degrees of freedom [20]. For a
diatomic gas molecule, the three translational

degrees of freedom contributék, the two
rotational degrees of freedom contribéﬂeand the

two vibrational degrees of freedom contribbzttk

for a total of3.5k. If a photon were a point particle
with three degrees of freedom for translation and
one degree of freedom for polarization, the entropy
would be close to 25 Quantum mechanically
speaking [21], entropy is related to the number of
microstates ), which for the photon would be
36.6, sinceS =k In. The entropy of a photon
given in Eqn. (35) is more consistent with the
model of an extended and dynamic photon
consisting of translational and rotational osailtat
[22-25], and less consistent with the model of a
kinematic photon being a mathematical point with
integer spin.

The average internal energy of the photaf (
composing the photon gas in the cylinder is related
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to the velocity of the cylinder in the same wayttha
the average internal energy of the photons isadlat
to the temperature. The average internal energy of
the photons in the blackbody radiation is given by
the ratio of the internal energy density given in
Egn. (12) and the total number of photons per unit
volume given in Eqn. (31):
uv _8m® 1

E=—=——kT =270kT
NV 15 60.42

(37)

Consistent with the shape of the curve that
describes blackbody radiation, the value for the
average internal energy of the photon is slightly
lower than the value of the internal energy of the
photon at the peak of the blackbody radiation curve
given by the Wien displacement law:

E(peak) = 282 kT (38)

When the walls of the cavity are matte black,
both the energy of the photon at the peak of the
curve that characterizes the blackbody radiation
and the number of photons at the peak of the curve
increases as a result of the velocity-induced
Doppler effect (Fig. 2). This is best characterized
by the velocity-dependent temperature of the
photon gas inside the cylinder. The velocity-
induced temperature increase has a greater effect
on photon number than on the energy of the photon
at the peak of the blackbody radiation curve since
the energy of the photon at the peak of the
blackbody radiation curve is directly proportional
to temperature while the number of photons in the
blackbody radiation is proportional to the third
power of temperature. The velocity-induced
Doppler effect expanded to the second order results
in an increase in the internal energy density, the
temperature, the entropy density, and the apparent
inertial mass (Table 1).

When the walls of the cavity are not black, but
are perfectly specular reflecting, uniform
translational motion will cause an increase in the
energy of the photon at the peak of the curve that
characterizes the radiation but there will be regith
a change in photon numbetN = 0) nor entropy
(dS = 0). Consequently, the radiation in the cavity
will no longer be distributed according to Planck’s
blackbody radiation law and the analysis given here
will not hold. Nevertheless, whether the walls of
the cavity are matte black or perfectly specular
reflecting, the velocity-induced change in the peak
of radiation would be irreversible and the potdntia
energy irretrievable because moving the blackbody
radiation-filled cylinder at uniform velocity in ¢h

opposite direction would not cause a decrease in
internal energy but a further increase. Indeedveha
shown that the interaction of Doppler-shifted
photons with moving bodies is the fundamental and
inevitable cause of irreversibility [10].

3E-18
2.5E-18
2E-18

[34]
'E 1.5E-18 -

1E-18 =

9c

5E-19

Spectral Energy Density,

0 1
0.00E+00 1.00E+14

Frequency, s

Fig.2: The velocity-induced change in the distribatof
blackbody radiation in a cylinder with matte blaakd
adiabatic walls and constant and invariant volume
translating uniformly at various speeds (0, 0.5ad a
0.9c). Note that the spectral energy density (n)Jat a
given velocity multiplied by the square of the sped
light gives the spectral mass density (in ki)/at a given
velocity. Likewise the integral of the spectral mne
density (in J/m) at a given velocity multiplied by the
square of the speed of light gives the total masssity
(in kg/nT) of the enclosed radiation at a given velocity.

As a result of the increase in the internal energy
(dU) of the photon gas in the moving cylinder
described and explained by the velocity-induced
Doppler effect expanded to second order, the
blackbody radiation within the cavity can be
considered to have a velocity-dependent apparent
inertial mass dm) that provides a resistance to
movement at constant velocity (Table 1).

For the cylinder to move at constant velocity,
an additional amount of potential energy must be
applied to the moving cylinder in order to
compensate for the apparent inertial mass of the
blackbody radiation within. In light of what we
have deduced about the velocity-induced increase
in internal energy that will take place as a resiilt
the Doppler effect expanded to second order, we
can write the relationship between the applied
potential energy and the change in kinetic energy
of the radiation filled cylinder like so:

PEappiica = sm dv? + dU (39)
Where,dU is the differential in the internal energy
density that results from the differential velocity
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change dv. Given that Eqn.
c?dm = dU,

(23) states that

PEgppiica = %m dv? + c*dm (40)

Table 1: The velocity-induced increase in the fesmy ¢), energy kv) and momentum’—}) of a photon at the
peak of the curve characterizing blackbody radmtithe velocity-induced increase in the temperatiie
internal energy densitys—l, photon number densitgx and entropy densitylS;I of the blackbody radiation; and

the velocity-induced increase in the apparent ni@ss=

'Z—Z) of blackbody radiation initially at rest at 300 K

for a cylinder with matte black and adiabatic walfel with constant and invariant volume. The vakresgiven
for an initial state of zero velocity and a fin&dte with a constant velocity of 0.9c.

v v E=hv _hv T u N S dm
P= v v Vv
st J K kg
kg m st Jm? m? JKIm?
0 176 x 16° | 1.17x10° | 390x10° | 300 | 6.11x18 | 5.45x 16" | 2.73x 10 0
09c| 404x15 | 268x10° | 8.92x107 | 688 | 168x10 | 65.8x16" | 329x 10 | 1.80 x 10%

This means that the average force calculated
from the work-energy theorem given in Eqgn. (3) to
be sufficient to accelerate the cavity with constan
massm at rest to a given velocity will actually be
an underestimate of the required force. The
additional force necessary is a result of the
velocity-dependent increase in apparent inertia
(dm) of the photon gas within the cylinder that
must also be considered when calculating the
relationship between the average applied force
(F appliea) @nd acceleratiora):

Fapplied =(m+dm)a (41)

The optomechanical counterforce pi,pier)
resulting from the Doppler effect expanded to
second order was already found to describe and
explain the nonlinear relationship between applied
force and the acceleration of particles with a ghar
and/or a magnetic moment [11,26]:

Fapplied + FDoppler =ma (42)
and here | have shown that the Doppler effect can
describe and explain the nonlinear relationship

between applied potential energy and constant

velocity for an extended object:
ts ts
FDopplerv dt = f Fappliedv dt

t1

Eapplied + f

t1

(43)

The discrepancy between Hasendhrl's and
Einstein’s equations for the relationship between
the energy and inertia of radiation has been
difficult to reconcile [27-35]. Here | have obtathe
Einstein’s relationship for the energy equivaleht o
mass based on Hasenthdedankenexperimebly
taking into consideration the relationship between
the energy and linear momentum of a photon and
the dynamic processes that result from the Doppler
effect expanded to the second order in Euclidean
space and Newtonigime.
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